247 research outputs found

    Configuration interaction calculations of the controlled phase gate in double quantum dot qubits

    Full text link
    We consider qubit coupling resulting from the capacitive coupling between two double quantum dot (DQD) single-triplet qubits. Calculations of the coupling when the two DQDs are detuned symmetrically or asymmetrically are performed using a full configuration interaction (CI). The full CI reveals behavior that is not observed by more commonly used approximations such as Heitler London or Hund Mulliken, particularly related to the operation of both DQDs in the (0,2) charge sector. We find that there are multiple points in detuning-space where a two-qubit entangling gate can be realized, and that trade-offs between coupling magnitude and sensitivity to fluctuations in detuning make a case for operating the gate in the (0,2) regime not commonly considered.Comment: 4 pages, 5 figure

    Coherent electron transport by adiabatic passage in an imperfect donor chain

    Get PDF
    Coherent Tunneling Adiabatic Passage (CTAP) has been proposed as a long-range physical qubit transport mechanism in solid-state quantum computing architectures. Although the mechanism can be implemented in either a chain of quantum dots or donors, a 1D chain of donors in Si is of particular interest due to the natural confining potential of donors that can in principle help reduce the gate densities in solid-state quantum computing architectures. Using detailed atomistic modeling, we investigate CTAP in a more realistic triple donor system in the presence of inevitable fabrication imperfections. In particular, we investigate how an adiabatic pathway for CTAP is affected by donor misplacements, and propose schemes to correct for such errors. We also investigate the sensitivity of the adiabatic path to gate voltage fluctuations. The tight-binding based atomistic treatment of straggle used here may benefit understanding of other donor nanostructures, such as donor-based charge and spin qubits. Finally, we derive an effective 3 \times 3 model of CTAP that accurately resembles the voltage tuned lowest energy states of the multi-million atom tight-binding simulations, and provides a translation between intensive atomistic Hamiltonians and simplified effective Hamiltonians while retaining the relevant atomic-scale information. This method can help characterize multi-donor experimental structures quickly and accurately even in the presence of imperfections, overcoming some of the numeric intractabilities of finding optimal eigenstates for non-ideal donor placements.Comment: 9 pages, 8 figure
    • …
    corecore